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1. Introduction 

Let (A, m) be a local ring and Z and an ideal of A. In this paper, all local rings are 
assumed to have infinite residue fields. An ideal .Z 5 Z is called a reduction of Z if 
Zflfl = Z”J for some nonnegative integer n. A reduction J is called a minimal reduction 

if it does not properly contain a reduction of I. These notions were introduced by 
Northcott and Rees [16]. They proved that minimal reductions of Z do always exist, 
and every minimal reduction of Z is minimally generated by E(Z):= dim 0, k 0 P/ml” 

which is called the anQ~y~~c spread of 1. If J is a minimal reduction of I, we define the 
reduction number of I with respect to J, denoted by r,(Z), to be the last nonnegative 
integer n such that I”+’ = Z”J. The reduction number of Z is defined by 
r{Z) = min{r.,(Z); J is a minimal reduction of Z 3. 

Reduction numbers have been proven to be very useful in studying the Co- 
hen-Macaulay (abbr. C-M} and Gorenstein property of the associated graded ring 

G(Z) = @,I>OZn/Zn+l and the Rees algebra A[Zt] = a,, z 0 Z”t” of I. It was initiated 
by Sally, Goto and Shimoda, and is intensively studied now by various authors (see, 
e.g., [l] for references). Therefore it is of great interest to study properties of reduction 
numbers: see 14, 10,12-14, 19,231. 

The main aim of this paper is to give upper bounds for the reduction numbers of 
equimultiple ideals. Recall that ht Z < t(Z) < dim A and Z is called an equimuttiple 
ideal if ht Z = 1(Z) [6,9]. For instance, all m-primary ideals are equimultiple. Sally 
[17] gave a bound on r(m) when A is a C-M ring. Using results of Eakin and Sathaye 
[4] and of Shalev [ZO] we can give in Section 3 a bound on the reduction number of an 
m-primary ideal in any local ring in terms of a suitable invariant of Z. If d > 1, easy 
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examples show that there is no bound on r(Z) depending only on the base ring A even 
if A is a regular ring. Our bound will involve the order of the ideal I in A (Proposition 
3.1). In Section 4 we consider arbitrary equimultiple ideals. We need additional 
assumptions in order to reduce to the case of m-primary ideals. This idea was 
successfully applied in studying the C-M property of G(Z) and A[Zt], see [6,9,24]. 
The condition we need is related to the (projectively) normal Cohen-Macaulayness of 
A along f (see [9]). In particular, our results extend the corresponding results of 
Schenzel [19] and Trung [23]. In Section 5 we study the vanishing of certain graded 
pieces of local cohomology modules of G(Z) with support in G(Z)+. This is of interest 
because the reduction number of I is bounded above by the Castelnuovo-Mumford 
regularity of G(Z) (see [23], or Lemma 2.1). We are able to generalize a recent result of 
Marley [14] to an arbitrary ideal (not necessarily equimultiple) in a local ring 
(Theorem 5.2). Then we apply it to give a characterization of the C-M property of the 
Rees algebra A[Zt] in terms of G(Z) and the reduction number r(Z). This is a converse 
of a result of Herrmann et al. [IS, Proposition 45.41. It turns out that if Z is an 
equimultiple ideal and A[Zt] is a C-M ring, then the reduction number r(Z) of Z does 
not depend on the choice of minimal reduction and is bounded above by ht Z - 1 (if 
A is a C-M ring this is known by results of Goto-Shimoda and of Grothe- 
Herrmann-Orbanz [6, Theorem 4.81). 

2. Preliminaries 

Throughout this paper, if not otherwise stated, Iet (A, m) be a d-dimensional local 
ring and Z an ideal of A with the analytic spread Z(Z) = s. Note that dim G(Z) = n and 
s = dim G(Z)/mG(Z). For short we also use the notation G = G(Z) and R = A[Zt]. 

Given an element x E A, we denote its initial form in G(Z) by x*. A system of elements 

xi, *.f > x3(& = dim A/Z) is said to be a system of parameters (abbr. s.o.p.) of A modulo 
Z if their images in A/Z form a s.o.p. of A/Z. 2 (resp. N) denotes the set of integers (resp. 
nonnegative integers). 

A noetherian ring S is called a standard graded a@ebra if S = 0, t D,Sn, where So is 
a local ring with the maximal ideal n and S is generated by Si as an algebra over So. 
We denote by S + = a,, 0 S, the ideal generated by all homogeneous elements of S of 
positive degree and 9.R = tt @ S+ the homogeneous maximal ideal of S. (See [ 151 for 
information on noetherian graded rings.) For a graded S-module E denote by [E& the 
nth graded piece of E. E(p) denotes the same module E shifted by p, i.e. 

CEb)In = En+g. In this paper we consider both local cohomology modules H&(E) 

and EI$+(E) with support in $Xn and (resp.) in S+ , Note that they are graded S-modules 
and [H&(E)], = [Z&+(E)], = 0 for all large YE. Set 

$(S) = sup(n E z; [ZZ$+(S)ln # 01, 

and 

Ui(S) = SUp(fl E Z; [H&(S)]” # 01. 
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(Convention: if H;+(S) = 0 (resp. H&(S) = 0) we set ai = - co (resp. ai = 
- co)). For convenience we denote ad(S) simply as a(S), where d = dim S. It is often 

called the a-invariant of S and was introduced by Goto and Watanabe [S]. The 

number 

reg S = max{i + ai( i 2 0}, 

is called Castelnuovo-Mumford regularity of S. We also use the following notation: 

regt S = max{i + a:(S); i 2 t >. 

Thus reg S = reg, S. The relationship between the reduction number rJ(Z) and the 

above-defined cohomological invariants of G(Z) is given in the following lemma: 

Lemma 2.1 (Trung [23, Proposition 3.21). Let J be an minimal reduction of I and 
s = l(Z). Then 

a,(G(Z)) + s I rJ(Z) I reg(G(Z)). 

Corollary 5.3 in this paper shows that we can often replace reg G(Z) in the above 

inequality by reg, G(Z). The following result can be derived from the proof Theorem 

1.2 of [23] and is given explicitly in [19, Theorem 3.31. It provides a condition when 

the reduction number is independent of the choice of a minimal reduction (cf. also 

[12]). Note that it is also an immediate consequence of the above lemma and 

Theorem 5.2 in this paper. 

Lemma 2.2. Assume that l(Z) = grade Z = s and grade G(Z)+ >_ s - 1. Then 

r_t(Z) = a,(G(Z)) + s = reg(G(Z)), 

for any minimal reduction J of I. 

The u-invariant a(G(Z)) plays an important role in studying the C-M and Goren- 

stein property of the Rees algebra A[Zt] and the associated graded ring G(Z), see, e.g. 

[S, 9, 241. We give here a result of Trung and Ikeda which will be used later. 

Lemma 2.3 (Trung and Ikeda [24, Theorem 1.11). Let Z be an ideal of A of positive 

height. Then A[Zt] is a C-M ring if and only if H&(G(Z))], = 0 for i < d, n # 1 and 

a(G(Z)) < 0. 

In order to work with the invariants ai we need more information on the local 

cohomology modules with respect to S, We recall a result of Serre (see [8, Theorem 

111.5.21): 

Lemma 2.4. Let S be a standard graded algebra and E a noetherian graded S-module. 

Then [Hi;+(E)],, is a noetherian So-module for all i and n. 
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The following auxiliary result is of independent interest. In the ring case, it can be 
derived from [lo, Lemma 2.31, by interpreting dim S/nS as I(S+). In fact we do not 
need the notion of analytic spread, so we give here a proof along with the statement. 

Lemma 2.5. Let S be a standard graded algebra and E a noetherian graded S-module. 
Then 

max{i; H&+(E) # O> = (Krull-)dim,,X, E/TIE. 

Proof. Let us denote by a and b the numbers on the left and on the right side of the 
above equation, respectively. In order to prove a I b we do induction on b. If b = 0 

then there is no such that E, = nE, for n > no. Since E, is a noetherian So-module, by 
Nakayama’s lemma, E, = 0 for n > no. By considering S/Ann,(E) we can reduce to 
the case S = So and conclude that H:+(E) = 0 for i > 0 (cf. [7, Proof of Proposition 
6.4, p. 881). Let b > 0. Take an element x E S1 such that x$p for all homogeneous 
prime ideals p E Ass(E/nE)uAss(E) with the property S, $p. Then 
dim(E/xE)/n(E/xE) = b - 1 and [O:Ex]n = 0 for n % 0. By the case b = 0 it follows 
that H$+(O:Ex) = 0 for i > 0. Hence, from the exact sequences 

0 -+ 0:,x + E --+ E/(0:,x) -+ 0, (1) 

and 

0 -+ (E/(O:,x))( - 1) z E + E/xE + 0, (2) 

we get by induction hypothesis the exact sequence: 

0 + CHi:lWIn-~ -+ [ffk?(E)ln, 

for all n E Z. Since [Hi: ‘(E)ln = 0 for IZ % 0, we must have Hkz ‘(E) = 0, i.e., a I b. 
Now, let us consider the exact sequence: 

0 + TIE -+ E + E/nE -+ 0. 

Since a I b, it gives the exact sequence: 

H:+(E) + H;+(E/nE) --+ 0. 

Note that Hg+(E/nE) z Hi+,,,,+ (E/nE) # 0. Hence H:+(E) # 0, i.e. a 2 b, as 
required. IJ 

3. Reduction number of ‘D-primary ideals 

In this section, let I be an m-primary ideal of A. If A is a C-M ring of multiplicity 
e(A), then Sally [17, Theorem 2.21 showed that r(m) I d!e(A) - 1. By using recent 
results of Shalev [20] we can give here an extension of this result of Sally to m-primary 
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ideals in arbitrary local rings. If d = 1 and A is C-M, Eakin and Sathaye showed in the 
proof of Corollary 3 in [4] that r(Z) I e(A) - 1 (cf. [2, Propositions 2.2 and 2.31, 
where Achilles and Schenzel considered also the case A being a Buchsbaum ring). If 
d > 1 it is well-known that there is no bound on r(l) which depends only on the entire 

ring A(take, for example, I = (x”, xn- ‘y, y”) c k[x, y],,,,,). Hence, we need an ad- 
ditional, suitable invariant. Let 

o(l) = min(n E N; m” c_ I}. 

e(1) denotes the multiplicity of I and e(A) = e(m) (see [15, Section 141). Let v(l) 
denote the number of generators in a minimal basis of 1. We have: 

Proposition 3.1. Let I be an m-primary ideal of A. 
(i) If A is a C-M ring, then 

r(1) 5 d!o(l)d-‘e(A) - 1 

(ii) If A is a regular ring, then 

r(l) < d-o(l)d-l - 1. 

and r(l) I d!e(Z)(d- ‘)ide(A)‘id - 1. 

(iii) For an arbitrary local ring A there is a constant B (depending only on A) such that 

r(1) < B-o(~)~-‘. 

Moreover, for any given E > 0 there is an integer n(E, A) such that for any ideal I with 

o(l) 2 n(E, A) we have 

r(l) I d(e(A) f ~)o(I)~-l - 1. 

Proof. For short, we set t = o(Z) and e = e(A). The main theorem of Eakin and 
Sathaye in [4] states that for an m-primary ideal I in any local ring, 

v(P) < 

implies r(l) < n. If A is a C-M ring, by [17, Theorem 1.21, v (Z”) I nd- ’ td- ‘e + d - 1. 
Hence the first inequality of (i) follows from the following inequality: 

(d!td-‘e)d-ltd-‘e + d _ 1 < (‘!“-: + “). 

Analogously, the second inequality of (i) follows from the following bound of 
Boratynski et al. [3, Theorem 51: 

v(Y) I [e(Z”)‘d-‘)‘de(A)“d] + d - 1 = [nd-‘e(l)(d-l)‘de(A)l’d] + d - 1, 
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where [x] denotes the integer part of x. Conclusion (ii) follows from the following 

result of Shalev [20, Corollary 4.3.11): if A is a regular ring then 

In order to prove (iii) we use [20, Theorem 4.33 which states that for any local ring 

v(Z) I v(m”) + D, 

where n is any integer 2 t and D depends only on the Hilbert function 

H,(n) = ~(m”/nt”+ ‘). Let r = r(m). Then, for n > max(r, D, v(m*)dtd- ‘} one can 

check that 

v(Z”) I v(m’“) + D I v(m*)v(tt?-‘) = v(mr) I*-;+;-l)+D$d). 

Hence r(Z) I Btd-i, where B = max{r, D, v(mr)}. 
Finally, let n, be a positive integer such that 

for all y1 2 ~1,. Let Y~(E, A) = max{ (n,/d(e + l))ild, (D/d(e + l))li(d-l)). Assume that 

t 2 IZ(E, A). Then, for n = [d(e + s)tdP1] one can check that 

Therefore r(Z) i n - 1, as required. 0 

4. Reduction number of equimultiple ideals 

IfZ is an ideal and x = {x1, . . , xr} be a subset of elements of A we denote by Z/x the 

ideal Z + (x)/(x) in the quotient ring A/(x). Recall that an element x E I” is said to be 

a super-cial element of order s for Z if there exists a positive integer c such that 

(In: x)nZ’ = I”-” for all n $0. An important property of superficial elements of order 

s for m is that e(A/xA) = se(A) if dim A 2 2 (see [26, Chapter 83). 

& = {x1, . . . , x, > c Z is called a superficial sequence (of order 1) for Z if Xi is a superficial 

element of order 1 for Z/(x1, . , Xi- 1) for all 1 i i < t. 

Lemma 4.1. Assume that A is normally C-M along I, i.e. A/Z” is C-Mfor all n 2 1. Let 
x be a parameter element of A modulo Z and J a minimal reduction of 1. Then J/x is 
a minimal reduction of Z/x and r(Z) = r(Z/x). 

Proof. Clearly, J/x is a reduction of Z/x. Let J E J/x be a minimal reduction of Z/x. 

One can write J = J’/x for some ideal J’ c J. Let n be an nonnegative integer such 
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that (Z/x)“+’ = (J’/x)(Z/x)“. Then Z”+i c J’Z” + (x). Since x is a regular element of 
A/Z”, it follows that I”+ ’ E J’Z” + XI”+ ’ 5 J’Z” + (x2) z ... . By Krull’s intesection 

theorem we get Z”+i = J’Z”, i.e. J’ is a reduction of I. Hence J’ = J and J/x is 
a minimal reduction of Z/x. In particular u(Z) 2 r(Z/x). Further, let r = r(J/x) and 
7 = J’/x be a minimal reduction of Z/x such that (Z/x)*+ ’ = J(Z/x)*, where J’ c 1. The 
above consideration shows that we can assume J’ to be a minimal reduction of I, and 
Z*+ 1 

= J’Z*. Therefore r(Z) I rJ,(Z) I r which gives r(Z) = r. 0 

Using this lemma we can extend results of the previous section to the case of 
equimultiple ideals Z such that A is normally C-M along I. For example, 
r(Z) I s!o(Z/x)“-‘e(A) - 1, where s = ht Z 2 1 and x is a s.o.p. of A modulo Z such 
that x is a superficial sequence for m. 

We will give in this section other bounds under the assumption that grade G+ 
2 s - 1. The following lemma is similar to Lemma 3.1 in [ll]. 

Lemma 4.2. Let S be a d-dimensional standard graded algebra with an artinian local 

ring S,,. Then 

a(S) + d I e(S+) - 1. 

Moreover, $S is a C-M ring, then 

a(S) + d I e(S+) - /(So). 

Proof. We do induction on d. If d = 0 then S = So @ ... @ S, with Si # 0, 0 < i 5 r. 

We have a(S) = r I e(S) - {(S,) = e(S+) - [(S,) I e(S+) - 1. Let d > 0. Consider 
S’ = S/H$(S). Then e(S’+) = e(S+). Take a nonzero divisor x E S; of S’. Set 
S” = S’JxS’. The exact sequence 

O-+s’(- 1)2 s + S”-+O, 

gives e(S’Q) = e(S+) and a(S’) + d I a(S”) + d - 1. Hence, by induction hypothesis, 
we get: a(S) + d = a(S’) + d I e(S’i) - 1 = e(S+) - 1. If S is a C-M ring, then S” is 
again a C-M ring and SG = So. Hence, again by induction, we obtain 

a(S) + d I e(S) - [(S,). 0 

Lemma 4.3. Let Z be an equimultiple ideal with s = ht Z > 0. Assume that A/Z” is C-M 

for n $ 0. Let x = {xl, . . . ,x6}, 6 = d - s, be a s.o.p. of A modulo I. Then 

(0 cc,(G(Z)) = a,(G(Zlx)). 
(ii) reg, G I reg, G(Z/x). 

Proof. Let x be a parameter element of A modulo 1. Consider the following exact 
sequences (note that deg(x*) = 0): 

0 + 0: x* -+ G + G/(0: x*) + 0, (3) 
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and 

0 + G/(0: x*) s G--i G/x*G- 0. (4) 

Since x is regular on A/Z”, [0:x*], = (Z’+’ :x)nZ”/Z”+’ = 0 for n $ 0. Hence, by 

Lemma 2.5, &+(0:x*) = 0 for i > 0. The exact sequence (3) gives 
Z&+(G) E HL+(G/(O: x*)) for i > 0. Also, by Lemma 2.5, we have 
max{i; H;+(G) # 0) = s. Then, (4) induces the exact sequence 

CfG+(G)l, z CfG+(G)I.- CGT+(G/X*G)L- 0. (5) 

From this it is immediate that a,(G) > a,(G/x*G). Let n > a,(G/x*G). Then the exact 
sequence (5) gives: [HSc+(G)], = x*[H&+(G)],. By Lemma 2.4 and Nakayama’s 
lemma it follows that [Z&+(G)],, = 0. Hence a,(G) I a,(G/x*G), and so 

as(G) = a,(Glx*G). 
Now let us consider the following exact sequence of G-modules: 

0 + M + G/x*G + G(Z/x) -+ 0, (6) 

where 

M= @ p+‘+xz” = ntO xzn:“;t? I"+' + Inn(x) _ o 

flt0 n(x)’ 

Since Inn(x) = x(Z" :x) = xl” for n $ 0, [Ml,, = 0 for n $0. Therefore, by Lemma 2.5, 
H&+(M) = 0 for i > 0. From (6) we then get Hk+(G/x*G) z Hb+(G(Z/x)) for i > 0 and 

a,(G(Zlx)) = a,(W*G) = a,(G). 

Moreover we have ht(Z”/x) 2 ht(Zn + (x)) - 1 [15, Theorem 13.6(ii)]. Since x is 
a regular element on A/Z” (n $ 0), ht(Z” + (x)) 2 ht(Z”) + 1. Therefore 
s 2 l(Z/x) 2 ht(Z/x) = ht(Z”/x) 2 ht(Z’) = s. This shows that Z/x is an equimultiple 
ideal of height s. Of course, A/Z” + (x) is C-M for all n 9 0. Hence, the equality (i) 
follows by induction. 

Similarly, using instead (5) the exact sequence 

C&+ (WI, 2 C%+ (Win - [H~+(G/x*G)],, i 2 1, 

we get ai(G/x*G) 2 a,(G) which yields (ii). 

Theorem 4.4. Let Z be an equimultiple ideal in a C-M ring A with s = ht Z 2 1. Assume 
that A/Z” is C-M for all n $0 and grade G(Z)+ 2 s - 1. 

(i) Zf A is an arbitrary local ring, then for any s.o.p. 6 of A modulo Z we have 

r(Z) 5 e(Z/x) - 1. 
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Moreover, ifG(I) is a C-M ring, then 

r(J) 5 e((Jlx) - {(A/U + (3)). 

(ii) Zf in addition A = B,,, and I = J,, where B is a standard graded k-algebra, 

m = B, and J is a homogeneous ideal generated by elements of the same degree t, then 

r(l) 5 tS-‘e(A) - 1. 

Proof. By Lemmas 2.2 and 4.3 we have r(Z) = aS(G(J/x)) + s. Note that Z/x is an 
m-primary ideal of A/s and e(Z/x) = e(G(r/x)+). Hence (i) follows from Lemma 4.2. 

(ii) Similar to the local case, a homogeneous element XE B, is called a superficial 
element of order s for a homogeneous ideal I if there exists a positive integer c such 
that (I” : x)nZ’ = I”-” for all n 9 0. Let x be a homogeneous s.o.p. of B modulo 
J which is a superficial sequence for m. 5 consists of linear forms of B. Denote by x’ the 
image of x in A. Then 5’ is a superficial sequence for mA, and e(A/x’) = e(A). Again by 
Lemmas 2.2 and 4.3, r(Z) = a(G(J/x’)) + s. Moreover I/$ z (J/x),,,,,, and J/x is 
generated by elements of degree t in B/x. Therefore, in order to prove the second 
statement, it suffices to show that 

a(G(I)) + d I td-‘e(A) - 1, 

where J is in addition an m-primary ideal. 
For simplicity, we set in this proof G = G(J). Note that G(Z) = G(J,,,) = GcD1,, where 

9JJ1= m + G+ and Mot, denotes the homogeneous localization of a graded G-module 
M. Since 

a(G(Z)) = a(Gcw,) = a(G). We define e(B) = e(A). So, the second statement follows 
from the following inequality: 

a(G) + d I td-‘e(B) - 1, 

where J is an m-primary ideal. To show the latter, we do induction on d. If d = 1 then 
the above inequality follows from Proposition 3.1 (i), since a(G) + 1 = r(l). Let d 2 2. 
We first prove the following claim: 

Claim. There exists a homogeneous element y E J of degree t such that y is superficial of 
order 1 for J as well as superficial of order t for m. 

Proof. Let p1 . . . , pII be all homogeneous associated prime ideals of B. Assume that 
J is minimally generated by forms fi, . . . ,fb of degree t. Let I/ = kf;” + ... + 
kfb* c J/J’. Since B is a C-M ring, ht Pj = 0 for 1 <j I a. Iffy* E pj*, thenfi + g E pj 
for some g E J2, which implies fi E pj. Since ht J > 0, it follows that I/ $pj* for 
1 Ij I a. Let q,, . . . , q, be all homogeneous associated prime ideals of G such that 
G + $ qj. Then V $8 qj for 1 I j 5 c. Since k is infinite, there is an element y* E I/ such 
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that y* is not in any of subspaces VnpI and I’/nqj. Note that G(m) z B. Hence, if y is 
the homogeneous element of J which maps to y*, then y satisfies the conclusion of the 
claim. 0 

We now have (0: y*), = 0 in G for n % 0. Hence, from the exact sequences 

0 -+ 0:~” + G -+ G,‘(O:y*) -+ 0, 

and 

O- G/(O:y*)( - 1) 2 G- G/y*G- 0, 

we get that a(G) + d < u(G/y*G) + d - 1. On the other hand we have the exact 
sequence 

0 -+ M -+ Gjy*G -+ G(J/y) + 0, 

where 

As y is a superficial element of order 1 for J, J” : y = .I”- * for n + 0 (see Remark 1 on 
p. 8 of [18]), and so M, = 0 for n $0. Since dim G/y*G = dim G&Z/y) = d - 1 2 1, 
from the above exact sequence we then get a(G/y*G) = a(G(J/y)). Hence, by induc- 
tion hypothesis we have 

n(G) + d s u(G(~/y)) + d - 1 I td-2e(Z3/‘y) - 1. 

Since y is a superficial element of order t for m, e(B/y) = te(B). Thus a(G) + 
d < td-‘e(B) - 1, as required. 

Remark and example (i) The bound r(Z) 2 e(Z) - {(A/Z) was given by Schenzel 
[19, Theorem 4.41 for an m-primary ideal I provided that G(Z) is a C-M ring. This 
is no longer true for depth G(Z) = d - 1. For example, take Z = (t3, t4) c 
A = k[[t3, t4, t5 J]. Then r(Z) = 2 > e(Z) - e(A/Z) = 3 - 2. 

(ii) Let Z be an m-primary ideal. Assume that depth G(Z) 2 d - 1. It was stated in 
[23, Theorem 1.21 that r(Z) 2 ~(l)~-‘e(A) - 1. Unfortunately its proof on p. 235 is 
based on a false claim: we can always choose an element y E Z such that y is 
simultaneously a superficial element of order 1 for I as well as one (of some order) for 
m. This is true in the case (ii) of the above theorem. In the general case we have the 
following counter example: let Z = (t”l, sil) c A = k[[t4, t5, t”, s4, 2, s”]]. A is 
a C-M ring. Since t’l, s1 l . IS a regular sequence, G(Z) is a C-M ring. Any super~cial 
element u of order 1 for Z must be an element in a minimal basis of a minimal 
reduction of I. Hence u = at” + bs’ ‘, where at Ieast one of a and b does not belong to 
m. Without loss of generality assume that a$m. Then u$m2. Hence the image of u* 
in G(m) has the degree 1. Since u3 E m5, (u*)” = 0. This shows that u* is not 
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a parameter element of G(m). Therefore u cannot be a superficial element (of some 
order) for tn. We do not know whether Trung’s bound still holds for any local C-M 
ring. However, from the first statement of the theorem it follows that 
r(Z) I o(Z)de(A) - 1 (cf. also Proposition 3.1). 

(iii) Let Z = (x7, xl- ‘x2, . . . )x;- ‘&, x”,, . . . ) xz) c k[xl, . . . )x&,, ,&), where 
d 2 2 and n 2 2. Using [25, Corollary 2.71 one can check easily that (xi)*, . , (xz)* 

form a G(Z)-sequence, i.e. depth G(Z) 2 d - 1 (in fact = d - 1). .Z = (XT, . . . ,xs) is 
a minimal reduction of Z and (x;-~x~)‘-’ .“(x~-ixd)n-i$(x~, . . . ,~~)Z(~-~)(~-i)~i. 
Hence, by Lemma 2.2, r(Z) = rJ(Z) = (n - l)d-‘. This shows that for any dimension 
the bound of Theorem 4.4 (ii) is nearly sharp. It is attained by this example if d = 2. 
Note that o(Z) = d(n - 1). 

(iv) Let A be an equicharacteristic regular local ring and Z an equimultiple ideal of 
ht Z = s 2 1. Assume that grade G+ = s. Using an argument due to Huneke (see, for 
example, the introduction of [l]) we can show that r(Z) < s - 1. In fact, let 
J = (x1, ,xs) be a minimal reduction of I. By [21, Corollary 3.73, I” c .Z. Since 
grade G+ = s, XT, . . . ,x,* form a regular sequence in G. By [25, Corollary 2.71, 
I” = (Xi, . , x,)nZ’ = (x1, . . . , x,)Z’- i. This observation suggests that there are much 
better bounds on r(Z) if grade G, = s. 

As it was mentioned in the previous section, r(Z) I e(A) - 1 for any ideal of positive 
height in a one-dimensional C-M ring. Huckaba [ 131 asked whether this result is true 
for any regular ideal of analytic spread one in higher dimensions. Under some 
additional assumptions he proved there that r(Z) I 1 provided e(A) < 2 (but A is not 
necessarily C-M). We give here another partial result. 

Lemma 4.5. Let Z be an ideal of ht Z = 1 in a C-M ring A. Assume that A/Z” is a C-M 

ringfor some n 2 e(A). Then l(Z) = 1 and r(Z) I e(A) - 1. 

Proof. By a Rees’s result (see, e.g., [17, Theorem 2.1 and Remark I]), 

v(Z”)<e(A)< 

Hence, by [4, the main theorem], there is an element x E Z such that I” = XI”-i. Since 
x is a regular element it then follows that ~(1”~ ‘) = v(Z”). Again, by [4], I”-’ = yZnp2 
if n - 1 2 e(A). Repeating this process we get finally that v(Z”(~‘) < e(A), and 
r(Z) < e(A) - 1. 0 

As a consequence we get an extension of [13, Proposition 3.51. 

Corollary 4.6. Let Z be an ideal of ht Z = 1 in a C-M ring A. Then A/Z” is a C-M ring for 

some n 2 e(A) if and if A/Z” is a C-M ring for all n 2 e(A) - 1. 
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Proof. We can assume that dim A 2 2. The if part if trivial while the only if part 
follows from Lemma 4.5 and the remark that A/Z’ is C-M if and only if I’ is a C-M 
A-module. 0 

Corollary 4.7. Let I be an ideal of height one in a C-M ring A. Then G(Z) is a C-M ring 

and I is equimultiple if and only if the following conditions are satisfied. 

(i) A/I” is C-M for all 1 I n _< e(A). 

(ii) For some (or all) minimal reduction (a) of I we have 

(a)nZ” = al”-’ for 2 i n < e(A) - 1. 

Proof. By Lemma 4.5, we can assume from the beginning that Z is an equimultiple 
ideal. Let x = (x1, . . . ,xdel} be a s.o.p. of A modulo I. Assume that G is C-M. By [6, 
Proposition 4.51, A/Z” is C-M for all n 2 1, and 

(a)nZ” c al”- ’ + (x1;, . . , xi_ 1), 

for all n 2 1 and i 2 1. Hence, by Krull’s intersection theorem we get (ii) for all n. 

Converserly, assume that (i) and (ii) hold. Then, by Corollary 4.6, A is normally C-M 
along I. By Lemma 4.5, (a)nZ’ = al”-’ for all n 2 1 (note that rca,(Z) does not depend 
on the choice of (a)). Hence, by [6, Proposition 4.5, (iv) =z- (i)], G(Z/zc) is a C-M ring. 
Thus G is C-M by [6, Proposition 4.5, (ii) * (i)]. 0 

5. Rees algebra 

Marley [14, Theorem 2.11 proved that for an m-primary ideal Z in a local C-M ring 
we have a,(G) < a,+ r(G), where t = grade G, is assumed to be 5 d - 1. This implies, 
in particular, that in order to compute the upper bound reg G on r,(Z) in Lemma 2.1 
one needs only to consider d - t local cohomology modules Z&+(G), i > t. We will 
give here an extension of this result, and then apply it to study the C-M property of the 
Rees algebra. We begin with a simple result. 

Lemma 5.1. Let x be an element in a minimal basis of a minimal reduction of I. Assume 

that x* is a regular element on G(Z). Then l(Z/(x)) = l(Z) - 1. 

Proof. Set l(Z) = 1. Clearly that l(Z/(x)) < 1 - 1. Assume that l(Z/(x)) < 1 - 1. By 
Lemma 2.5, HL;r(G(Z/(x)) = 0. From the exact sequence: 

X* 
O--+G(-1)-G 

we then get an injection 

-3 G/x*G E G(Z/(x)) + 0, 
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for all n E Z. Since [H’,+(G)], = 0 for n % 0, Z&+(G) = 0 which is, by Lemma 2.5, 
a contradiction to 1 = l(Z). 0 

Note that the above lemma is not true if there is no restriction on x*. For example, 
the ideal Z = (u2, uv) c k[u, u]~,,,) has the analytic spread 2, but Z/(u2) is a nilpotent 
ideal. 

Theorem 5.2. Let I be an ideal (not necessarily equimultiple) in an arbitrary local ring A. 

Assume that t = grade G(Z)+ < l(Z) and grade I 2 t + 1. Then a,(G(Z)) < a,+ ,(G(Z)). 

Proof. We do induction on t. Let t = 0. Consider two exact sequences: 

0 -+ R, +R+A+O, 

and 

0 -+ R+(l) + R -+ G + 0. 

Note that H:+(G) z .H&+(G). Since Z contains a regular element, Hi+(R) = 0. Fur- 
ther, [&+(A)], = 0 for n # 0, so [Hk+(R+)], g [Z&+(R)], for n # 0. Hence, for 
n 2 0 we get an exact sequence: 

0 -+ CfGi+KWn + C~~+WI,+I + Cffk+UW, + Cffk+(G)I,. 

Set b = al(G). Then for II 2 max{b + 1, 0} we get from (7) an epimorphism: 

(7) 

CH~+WI,+I + Wk+UWn + 0. 

Since [H;+(R)],+ 1 = 0 for n 9 0, we must have [Hk+(R)J, = 0. If b I 0, from (7) it 
then follows that [H:+(G)], = 0 for n 2 0. But H:+(G) is an ideal of G, we also have 
[Hi+(G)], = 0 for n < 0. Hence H:+(G) = 0 which contradicts to the assumption 
t = 0. Thus b 2 1. Considering again the exact sequence (7) we see that [ZZg+(G)ln = 0 
for n 2 b. This means a,,(G) I b - 1 < al(G). 

Now let t > 0. Let x be an element in a minimal basis of a minimal reduction of 
Z such that x* is a regular element in G (such a choice is always possible). Then x is 
a regular element in A and, by Lemma 5.1, l(Z/(x)) = 1 - 1. Moreover 
grade G(Z/(x))+ = t - 1 and grade Z/(x) 2 t. Set G = G(Z/(x)) z G/x*G. The exact 
sequence 

X* 
O+G(-1)-+G+G-,O 

induces the following exact sequence: 

0 -+ CfCC+l(Wn + Cffi+(G)In-~ --) [IHfc+(G)ln -+ C%+(~)ln 

--, CS?WI,-I. (8) 
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By the induction hypothesis, at(G) > a,- i(G). In particular, a,(C) is an integer (since 
grade G+ = t - 1). Let it 2 a,(C). From (8) we then get an injection: 

0 -+ Cf&+(GL, + CfG+(G)ln. 

Hence [Hb+(G)],_i = 0 for all n 2 a,(G), i.e. g,(G) < a,(G) - 1. But then, setting 
II = a,(G) in (8) it follows that [H’,f+i(G)],,(~)_i # 0, i.e., a,+i(G) 2 a,(G) - 1. Thus 
G,+ 1(G) > a,(G), as required. 0 

Corollary 5.3. Assume that I contains a regular element. Then reg G(Z) = reg, G(Z). 

Now we can prove a converse of [9, Proposition 45.41. 

Theorem 5.4. Let I be an equimultiple ideal of a local ring A and s = ht I > 0. Then 

A[Zt] is a C-M ring if and only if the following conditions are satisjed: 

(i) r(1) I ht I - 1. 
(ii) H&(G)ln = 0 for n # - 1 and i < d. 

Proof. Assume that A[Zt] is C-M. Then (ii) follows by Lemma 2.3. (i) is proved in [9, 
Proposition 45.43. We give here another proof of(i). Let 5 be a s.o.p. of A modulo I. By 
[24, Theorem 5.31, the Rees algebra A/(x)[(l/x)t] is also C-M and A is normally C-M 
along I. Hence, from Lemmas 4.1, 2.1, and 2.3 we get 

r(Z) = r(Z/x) = reg G(l/x) = max{i + ai(G(l/x))} I s - 1. 

For the converse, by Lemma 2.3 it suffices to show that a(G) < 0. Let us see how a(G) 
changes by cutting by x7. Note that deg(xf) = 0. From the exact sequence 

X* 

0 + G/(0:x:) --A G + G/xTG -+ 0, 

we get an exact sequence: 

0 = [H&-‘(G/x:G)], 

for all n > a(G/xTG). In 

+ Cff&(G)ln 2 C&#)l. + 0, 

particular, x: is a nonzero divisor of [H&(G)],. Take 
u E [H&(G)],. It is known that (xT)~u = 0 for some p B 0. Hence u = 0 and 
[H&(G)],, = 0. This shows that a(G) _< a(G/xTG). Repeating this process we get 
a(G) _< a(G), where G = G/(x*)G. Let J be a minimal reduction of I such that 
r.,(Z) = r(1). Then J* is a minimal reduction of G+ and r,*(G+) = r,(l). Note that, by 
[9, Proposition 10.201, G, is a YJIG-primary ideal with ht G, = ht G, = htl. In this 
case it follows from [9, Corollary 10.151 that J*/(x*) is also a minimal reduction of G+ 
(we do not need the assumption of Lemma 4.1). Hence r(G+) 5 r(G+) = r(Z). By 
Lemma 2.1 and (i) we then get 

a(G) I a(G) = a_,(e) I r(c+) - s < r(1) - s < 0. 0 
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This theorem extends the following results of Goto-Shimoda (for m-primary case) 
and of Grothe-Herrmann-Orbanz [6, Theorem 4.81. It is also an immediate conse- 
quence of Lemmas 2.3 and 4.1. Note that, by a well known result of Huneke, if A is 
a C-M ring then the C-M property of A[Zt] forces G(Z) to be C-M. 

Corollary 5.5. Let A be a C-M ring and I an equimultiple ideal of A with ht I 2 1. Then 

A[Zt] is C-M if and only ifG(Z) is C-M and r(Z) I ht Z - 1. 

Assume that Z is an equimultiple ideal in a local C-M ring A. As we have mentioned 
before, the reduction number r,(Z) is independent from the choice of a minimal 
reduction .Z provided that G(Z) is C-M. It turns out that this is also true if A[Zt] is 
C-M, but A is not necessarily C-M (if A is a C-M ring, the C-M property of A[Zt] 

would imply the C-M property of G(Z) and there is nothing new). 

Proposition 5.6. Let I be an equimultiple ideal of A. Assume that A[Zt] is C-M. Then 

r(Z) = reg(G(Z)). In particular, the reduction number r(Z) is independentfrom the choice 

of‘minimal reduction. 

Proof. We can assume that s = ht Z > 0. Let J = (xi, . . . ,xs) c I be a minimal reduc- 
tion of I. Then J* = (XT, . . . , xf ) is a minimal reduction of G+ and rJ(Z) = r,.(G + ). 

First, let us consider the case of m-primary ideals, i.e. s = d. By Lemma 2.3, 
[ZZ&(G)ln = 0 for i < d and IZ # - 1. Hence, by [22, Corollary 3.121, G, is a standard 
ideal of G. By [22, Proposition 3.11, it implies that x7, . . ,x2 is a d-sequence. In this 
case, by [23, Corollary 3.3 and Lemma 3.41, we have rJ*(G+) = reg G. This means that 
rJ(Z) does not depend on the choice of J and r(Z) = reg G. 

Now, let s < d. Since It contains a homogeneous parameter element of A[Zt] (see 

[6, Proposition 2.6]), Z satisfies the assumption of Corollary 5.3. Therefore 
reg G = reg,(G). Further, by [24, Theorem 5.31, A/Z” and A/(x)[(Z/~c)t] are C-M rings 
for all n 2 1. By Lemmas 4.3 (ii) and 2.1 we then get 

r.,(Z) I reg G = reg, G I regl G(Z/x) 5 reg(G/x)) = r,,,(Z/x). 

The last equality follows from the case of m-primary ideals and the fact that J/x is also 
a minimal reduction of Z/x (Lemma 4.1). It is obvious that rJ,,(Z/x) I rJ(Z). Hence 
r(Z) = r,(Z) = reg G, as required. q 
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